Introduction to Simple Linear Regression STAT 215 Fall 2013

Modeling - Overview

- In many research studies several variables are observed simultaneously and the intent is to study their relationships.
- Recall:
 - Explanatory: Variable that is thought to affect ("explain") another variable
 - Response: Variable that is thought to be affected by ("respond to") the explanatory variable(s)

- Different statistical methods exist, to describe relationships between one or more explanatory variables and a response.
 - Which method to use depends on how many variables there are and whether they are *quantitative* or *categorical*.

Statistical Methods - Overview

- One-sample z or t-test (Chapter 8)
 - Compare a population mean to some theoretical value
 - One quantitative variable
- Two-sample z or t-test (Chapter 9)
 - Models relationship between
 - One categorical explanatory variable (with two categories)
 - One quantitative response
- One-Way ANOVA (Chapter 10)
 - Models relationship between
 - One categorical explanatory variable (with more than two categories)
 - One quantitative response

Statistical Methods - Overview

• Simple Linear Regression (Chapter 12)

- Models <u>linear</u> relationship between
- One quantitative explanatory variable
- One quantitative response variable
- Multiple Linear Regression (Chapter 13)
 - Models <u>linear</u> relationship between
 - Several quantitative explanatory variables
 - One quantitative response variable

Simple Linear Regression (SLR)

- Suppose we have observations on pairs of quantitative variables (one explanatory, one response).
- Example:
 - Height and weight of patients
 - Duration of exercise and heart rate
 - Temperature and soil moisture
 - Amount of water a plant receives and height of plant

 We want to investigate the <u>linear</u> relationship between these variables

Simple Linear Regression (SLR)

- The graphical display for two quantitative variables is called a <u>scatterplot</u>.
- Usually the explanatory variable is plotted on the x-axis and the response on the y-axis.
- A measure of association for two quantitative variables is the <u>correlation coefficient</u> r.
- If two variables are strongly associated, the points in their scatter plot will lie close to a line.

Least Squares Regression

- Even if the association between two variables is high, we cannot expect all points to lie exactly on a line there is always variation!
- But we can use a line to "model" the relationship between the variables.
- Which straight line approximates a given set of data points "best"?
- A standard approach for estimating the line is called <u>Least Squares</u> <u>Regression</u>.
- The line is chosen, so that the sum of squared vertical distances between points and the line is minimized.

Vocabulary

- The (x,y)-coordinates actually measured in the experiments are the <u>observed</u> values. These represent the available data for the study.
 Notation: y_i Observed response for individual i
 X_i Value of explanatory variable for individual i
- The points that lie on the regression line vertically above (or below) an observed value are called the *predicted or fitted* values. Notation: \hat{y}_i
- The (vertical) distances between observed and predicted values are called the <u>residuals</u>.

Notation: $e_i = y_i - \hat{y}_i$

Vocabulary

SLR Model

Statement of Model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \text{ where } \begin{cases} i = 1, 2, \dots, n \\ \varepsilon_i \sim N(0, \sigma^2) \end{cases}$$

- Remember \mathcal{Y}_i , \mathcal{X}_i are our observed values for the response and explanatory variables for individual *i*
- Model Parameters (unknown)
 - β_0 = intercept
 - $\beta_1 = \text{slope}$
 - σ^2 = error variance

Assumptions

- <u>Linear</u> relationship between X and Y
- Model assumes that the error terms are
 - Independent
 - Normal
 - Have constant variance.
- Residuals may be used to explore the legitimacy of these assumptions.

Interpretation of Regression Coefficients

- We call the intercept (β_0) and slope (β_1) parameters the <u>regression coefficients</u>
- The intercept (β_0) is the average value of the response variable when X = 0.
- The slope (β₁) represents the increase (or decrease if negative) in the mean response for a 1-unit increase in the value of X.

Fitted Regression Line

- The parameters β_0 , β_1 , σ^2 must be estimated from the data
- Estimates denoted: $\hat{\beta}_0, \hat{\beta}_1, \hat{\sigma}^2$
- Fitted (or estimated) regression line is:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

 The "hat" notation denotes an estimate of a parameter (or a fitted value for the response)

Correlation Coefficient (r)

- Describes the strength and direction of the linear relationship between the explanatory and response variables
- We discussed this in chapter 5.
- Ranges between -1 and +1
- Sign: Positive or negative slope (relationship)
- Strength: The closer to ± 1 , the stronger the linear relationship.
 - The points in the scatter plot will lie close to the regression line.
 - <u>http://istics.net/stat/correlations/</u>

Coefficient of Determination (r²)

- The square of the correlation coefficient (r²) is the proportion of variation in the response variable y that is explained by the regression of y on x.
- Typical to multiply by 100 and express as a percentage (the percentage of variation explained by the model).

Example: Old Faithful

- Can we predict when the next eruption of old faithful will be based upon the duration of the previous eruption?
- Historical data:
- A park geologist collected measurements over an 8 day period from August 1-8, 1978
- Data on n=107 eruptions during this time period
- Variables measured:
 - Duration of eruption in minutes
 - Interval of time (in min) until the next eruption starts
- Which is the response? Which is the explanatory variable?

Example: Old Faithful Scatterplot

• Direction of relationship? Strength?

Example : Old Faithful Minitab Output

Regression Analysis: INTERVAL versus DURATION

The regression equation is INTERVAL = 33.8 + 10.7 DURATION

PredictorCoef SE Coef TPConstant33.8282.26214.960.000DURATION10.74100.626317.150.000

S = 6.68261 R-Sq = 73.7% R-Sq(adj) = 73.4%

Example : Old Faithful Model Interpretation

- From the output we see that:
 - $\hat{\beta}_0 = 33.828$
 - $\hat{\beta}_1 = 10.741$
 - $r^2=0.737$ or 73.7%, $r=+\sqrt{r^2}=0.858$ (+ since relationship is positive)
- So the fitted regression line is: $\hat{y} = 33.828 + 10.741x$
- 73.7% of the variation in interval of time until the next eruption is explained by the duration of the previous eruption.
- There is a strong positive linear relationship between interval between interval and duration.

Example: Old Faithful Slope Parameter

- Slope interpretation: As the eruption duration increases by 1 minute, the interval until the next eruption is expected to increase by 10.741 minutes
- To test whether there is a significant linear relationship between the response and the explanatory variable, we test whether the slope coefficient is zero (null hypothesis) or not (alternative hypothesis).
- If we have evidence that the slope is not zero (reject null) this means that there is a significant linear relationship between the two variables.
- The p-value for the slope here is <0.001. This means we have sufficient evidence that the slope is nonzero and that there is a significant linear relationship between interval and duration.

Example: Old Faithful Intercept Parameter

- Intercept interpretation: For a duration of 0 minutes, the average interval until the next eruption will be 33.828 minutes.
- Does this make sense?

Scope of Model

- The <u>scope of a regression model</u> is the range of X-values over which we actually have data.
- Predicting the values of the mean response for X-values within this range is called <u>interpolation</u>
- *Example:* Predicting average interval until next eruption for a previous duration of 2 minutes

Scope of the Model

- Using a model to look at X-values outside the scope of the model is called <u>extrapolation</u>
- Example: Predicting average interval until next eruption for a previous duration of 0 minutes or 10 minutes
- Extrapolation is dangerous since the model may not be valid over a wider range of values for the explanatory variable.
- Often, this is why we may not necessarily be interested in the interpretation of the intercept.

Example: Old Faithful Prediction

 According to our model, what is the predicted value for the interval until the next eruption if the previous duration is 2 minutes?

 $\hat{y} = 33.828 + 10.741 * 2 = 55.31$ minutes

 We can also calculate a "prediction interval" to give us a range of plausible values for when the next eruption will be with a certain level of confidence.

Final Note: Remember Correlation Does not Imply Causation!

- For regression models it is tempting to say that the explanatory variable "causes" changes in the response variable.
- But, we can only discuss causation if we have an experiment where randomization was employed.
- Otherwise, we can say there is an "association" at best and must be aware of possible confounding variables.
- <u>http://xkcd.com/552/</u>