Math 1140F - Exam 4

Name: \qquad

Monday, October 6, 2014
Time: 50 minutes
Instructor: Brittany Cuchta

Instructions:

- Do not open the exam until I say you may.
- All cell phones and other electronic noisemaking devices must be turned off or completely silenced (i.e., not on vibrate) for the duration of the exam.
- No calculators are allowed on the exam.
- The exam must be taken in pencil. Using a pen on the exam will result in the loss of points.
- Failure to follow directions specific to a problem will result in the loss of points.
- Circle or box your final answer where appropriate. Put your final answer in the provided space when available. Failure to do so will result in points being deducted.
- Show all work. Full credit will only be given if work is shown which fully and clearly justifies your answer. I reserve the right to not grade a problem which I cannot read.
- Answers must be exact (like $\sqrt{2}$), not approximate (like 1.414), unless a problem specifically indicates otherwise.
- All final answers must be simplified unless otherwise specified. Rationalization is not required unless otherwise specified.
- If you run out of room, use the back of the page and indicate this on the question.
- As always, you are expected to exhibit academic integrity during the exam.

Page:	1	Total
Points:	100	100
Score:		

1. (10 points) If $f(x)=\frac{x}{x+3}$ and $g(x)=\frac{27}{x+1}$, find $(f \circ g)(2)$. Give the domain of $(f \circ g)(x)$ in set notation.

$$
(f \circ g)(2)=
$$

\qquad

Domain of $(f \circ g)(x)$: \qquad
2. (4 points) Give f and g such that $(f \circ g)(x)=H(x)$.

$$
H(x)=\frac{1}{\sqrt{6 x+6}}
$$

$$
\begin{aligned}
& f(x)= \\
& g(x)= \\
&
\end{aligned}
$$

3. Are the following functions one-to-one?
(a) (2 points) $\{(1,3),(2,4),(-2,3),(4,2)\}$
(b) (2 points)

4. (11 points) Find the inverse of the following function. Be sure to check your answer. Failure to show a check of your solution will result in points being lost. Also state the domain and range of the inverse function in set notation.

$$
f(x)=\frac{x^{2}+3}{3 x^{2}}, x>0
$$

Inverse: \qquad

Domain: \qquad

Range: \qquad
5. (4 points) The equation of an exponential function is given. Select the graph that best represents the function. Clearly circle your answer.

$$
f(x)=3^{x-1}
$$

A

6. Solve the following equations. Express all powers as factors in logarithms.
(a) (6 points) $3^{x^{3}}=9^{x}$

Solution: \qquad
(b) (8 points) $e^{-2 x}=\frac{1}{3}$

Solution: \qquad
(c) $(10$ points $) \log _{3}\left(x^{3}+1\right)=2$

Solution:
7. Solve the following equations.
(a) (12 points) $\log x+\log (x-21)=2$

Solution: \qquad
(b) (10 points) $2^{2 x}+2^{x}-12=0$

Solution:
8. (6 points) If $\ln 2=a$ and $\ln 3=b$, express $\ln \sqrt[5]{6}$ in terms of a and b

Solution:
9. (4 points) Write the following expression as a single logarithm.

$$
\log \frac{1}{x}-\log \frac{1}{x^{2}}
$$

10. (5 points) Write the following expression as a sum and difference of logarithms. Express powers as factors. All polynomials which appear must be factored completely.

$$
\log \frac{\sqrt[3]{x^{2}+1}}{x^{2}-1}
$$

11. (6 points) Given the following function, graph the inverse on the same grid.

